682 research outputs found

    Desynchronization: Synthesis of asynchronous circuits from synchronous specifications

    Get PDF
    Asynchronous implementation techniques, which measure logic delays at run time and activate registers accordingly, are inherently more robust than their synchronous counterparts, which estimate worst-case delays at design time, and constrain the clock cycle accordingly. De-synchronization is a new paradigm to automate the design of asynchronous circuits from synchronous specifications, thus permitting widespread adoption of asynchronicity, without requiring special design skills or tools. In this paper, we first of all study different protocols for de-synchronization and formally prove their correctness, using techniques originally developed for distributed deployment of synchronous language specifications. We also provide a taxonomy of existing protocols for asynchronous latch controllers, covering in particular the four-phase handshake protocols devised in the literature for micro-pipelines. We then propose a new controller which exhibits provably maximal concurrency, and analyze the performance of desynchronized circuits with respect to the original synchronous optimized implementation. We finally prove the feasibility and effectiveness of our approach, by showing its application to a set of real designs, including a complete implementation of the DLX microprocessor architectur

    Automatic synthesis and optimization of partially specified asynchronous systems

    Get PDF
    A method for automating the synthesis of asynchronous control circuits from high level (CSP-like) and/or partial STG (involving only functionally critical events) specifications is presented. The method solves two key subtasks in this new, more flexible, design flow: handshake expansion, i.e. inserting reset events with maximum concurrency, and event reshuffling under interface and concurrency constraints, by means of concurrency reduction. In doing so, the algorithm optimizes the circuit both for size and performance. Experimental results show a significant increase in the solution space explored when compared to existing CSP-based or STG-based synthesis tools.Peer ReviewedPostprint (author's final draft

    What is the cost of delay insensitivity?

    Get PDF
    Deep submicron technology calls for new design techniques, in which wire and gate delays are accounted to have equal or nearly equal effect on circuit behaviour. Asynchronous speed-independent (SI) circuits, whose behaviour is only robust to gate delay variations, may be too optimistic. On the other hand, building circuits totally delay-insensitive (DI), for both gates and wires, is impractical. The paper presents an approach for automated synthesis of globally DI and locally SI circuits. It is based on order relaxation, a simple graphical transformation of a circuit's behavioural specification, for which the Signal Transition Graph, an interpreted Petri net, is used. The method is successfully tested on a set of benchmarks and a realistic design example. It proves effective showing average cost of DI interfacing at about 40% for area and 20% for speed.Peer ReviewedPostprint (published version

    Lazy transition systems: application to timing optimization of asynchronous circuits

    Get PDF
    The paper introduces Lazy Transitions Systems (LzTSs). The notion of laziness explicitly distinguishes between the enabling and the firing of an event in a transition system. LzTSs can be effectively used to model the behavior of asynchronous circuits in which relative timing assumptions can be made on the occurrence of events. These assumptions can be derived from the information known a priori about the delay of the environment and the timing characteristics of the gates that will implement the circuit. The paper presents necessary conditions to synthesize circuits with a correct behavior under the given timing assumptions. Preliminary results show that significant area and performance improvements can be obtained by exploiting the extra "don't care" space implicitly provided by the laziness of the events.Peer ReviewedPostprint (author's final draft

    Quasi-static scheduling of independent tasks for reactive systems

    Get PDF
    The synthesis of a reactive system generates a set of concurrent tasks coordinated by an operating system. This paper presents a synthesis approach for reactive systems that aims at minimizing the overhead introduced by the operating system and the interaction among the concurrent tasks. A formal model based on Petri nets is used to synthesize the tasks. A practical application is illustrated by means of a real-life industrial example.Peer ReviewedPostprint (author's final draft

    Formal verification of safety properties in timed circuits

    Get PDF
    The incorporation of timing makes circuit verification computationally expensive. This paper proposes a new approach for the verification of timed circuits. Rather than calculating the exact timed stare space, a conservative overestimation that fulfills the property under verification is derived. Timing analysis with absolute delays is efficiently performed at the level of event structures and transformed into a set of relative timing constraints. With this approach, conventional symbolic techniques for reachability analysis can be efficiently combined with timing analysis. Moreover the set of timing constraints used to prove the correctness of the circuit can also be reported for backannotation purposes. Some preliminary results obtained by a naive implementation of the approach show that systems with more than 10/sup 6/ untimed states can be verified.Peer ReviewedPostprint (published version

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV

    Get PDF
    Peer reviewe

    Design of Asynchronous Circuits by Synchronous CAD Tools

    No full text
    The roadblock to wide acceptance of asynchronous methodology is poor CAD support. Current asynchronous design tools require a significant re-education of designers, and their features are far behind synchronous commercial tools. This paper considers a particular subclass of asynchronous circuits (Null Convention Logic or NCL) and suggests a design flow that is based entirely on commercial CAD tools. This new design flow shows a significant area improvraent over known flows based on NCL

    Сутність та зміст поняття «інновації»

    Get PDF
    Most existing tools for the synthesis of asynchronous circuits from Signal Transition Graphs (STGs) derive the reachability graph for the calculation of logic equations. This paper presents novel methods exclusively based on the structural analysis of the underlying Petri net. This methodology can be applied to any STG that can be covered by State Machines and, in particular to all live and safe free-choice STGs. Significant improvements with regard to existing structural methods are provided. The new techniques have been implemented in an experimental tool that has been able to synthesize specifications with over 10/sup 27/ markings, some of them being non-free choice.Peer ReviewedPostprint (published version
    corecore